
The Schwarzian derivative and quasiconformal reflections on Sn

Martin Chuaqui

University of Pennsylvania

Abstract

It is well known that the Schwarzian derivative of an analytic map defined in a do-
main in the plane is closely related to global univalence and quasiconformal extension.
Osgood and Stowe have recently found a generalization of the Schwarzian derivative
for conformal local diffeomorphisms between Riemannian manifolds in arbitrary di-
mension. They establish a univalence criterion for such maps when the target is the
sphere Sn. The condition is expressed as an inequality involving the norm of the gener-
alized Schwarzian and quantities that depend on the geometry of the domain manifold.
From this result it is possible to recover many injectivity criteria in the unit disc, in-
cluding two classical conditions of Nehari. In connection with this work, we employ in
this paper the techniques developed by C. Epstein to construct quasiconformal reflec-
tions in Sn via hypersurfaces in hyperbolic n + 1-space. Our main result shows that
a strong form of the univalence criterion of Osgood and Stowe implies the existence
of an orientation-reversing quasiconformal diffeomorphism of Sn which fixes pointwise
the boundary of the image of the map.

Introduction

In complex analysis, the Schwarzian derivative has played a salient role as a means of
characterizing sufficient conditions for univalence and quasiconformal extension of analytic
maps. These two phenomena are intimately related as a remarkable behavior often arises in
the study of distortion theorems. Commonly, a stronger form of a given univalence criterion
serves further as a condition that guarantees the existence of a quasiconformal extension to
the entire plane. Gehring and Pommerenke have shown the following general result [Ge-Po]:

let ρ ≥ 0 be a function defined in the unit disc D such that the inequality

|{ψ, z}| ≤ ρ(z) , all z ∈ D (1)

implies the univalence of the locally injective analytic map ψ. Here {ψ, z} = (ψ′′/ψ′)′ −
1
2
(ψ′′/ψ′)2 is the Schwarzian derivative of ψ. If

|{ψ, z}| ≤ tρ(z) , all z ∈ D (2)

for some 0 ≤ t < 1, then ψ is univalent and admits a K-quasiconformal extension to the
plane. The constant K depends only on t. They show that the result holds on quasidiscs and
also when {ψ, z} is replaced by the quantity ψ′′/ψ′. We remind the reader that a quasidisc
is a Jordan domain which is the image of the unit disc under some quasiconformal map of
the plane. Equivalently, a quasidisc is a Jordan domain whose boundary is the fixed point
set of an orientation-reversing quasiconformal reflection of the extended plane.

Classical examples of (2) are [Ah 1], [A-W] and more recently, Epstein, and Anderson and
Hinkkanen have derived very general theorems of univalence and quasiconformal extension
(see [Ep 1] and [A-H]).
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In a recent paper Osgood and Stowe have introduced a notion of Schwarzian derivative
for conformal mappings of Riemannian manifolds, which generalizes the classical operator
in the plane [O-S 1]. In the subsequent paper [O-S 2], and using their new notion, the same
authors have established a sufficient condition for a conformal local diffeomorphism ψ of a
Riemannian n-manifold (M, g) to the standard sphere Sn to be injective (Theorem 1.1).

The criterion in [O-S 2] is classical in spirit, in the sense that it is stated as an inequality on
the (generalized) Schwarzian derivative similar to (1). It is , on the other hand, very general
in that it presents a unified approach to a vast class of known criteria. Different versions
of the theorem can be obtained just by changing the metric g conformally. For instance,
Osgood and Stowe derive as corollaries with M = D and g alternately the euclidean and
hyperbolic metric, two classical criteria of Nehari. Some new and most of the known criteria
were derived from Theorem 1.1 in [Ch 1]. In particular, Epstein’s injectivity result in [Ep 1]
could be recovered in this fashion.

The purpose of this paper is to show that a phenomenon analogous to the one established
by Gehring and Pommerenke also holds for the theorem of Osgood and Stowe. By using
Epstein’s techniques for constructing reflections in hyperbolic (n + 1)-space, we will show
that a strengthened version of Theorem 1.1 guarantees, in addition to the univalence of ψ,
the existence of an orientation-reversing quasiconformal diffeomorphism of Sn which fixes
pointwise the boundary of the image ψ(M). We shall follow Ahlfors in his definition of
quasiconformality in higher dimensions.

The results of this paper were part of the author’s dissertation, completed at Stanford in
1990 under the supervision of B. Osgood.

1. Preliminaries

In this section we will set up notation and present enough of the work in [O-S 1] so that
we can state the injectivity result in [O-S 2].

Let M be an n-dimensional Riemannian manifold with metric g. When M = Rn, we will
denote by g0 the euclidean metric and g1 will stand for the standard metric on the sphere
Sn. Given a conformal metric ĝ = e2ϕg on M , Osgood and Stowe define the Schwarzian
tensor of ĝ with respect to g as the symmetric, trace free (0,2)-tensor

Bg(ϕ) = Hess(ϕ)− dϕ⊗ dϕ− 1

n
(∆ϕ− |grad ϕ|2)g ,

where the metric dependent quantities on the right hand side are computed with respect
to the metric g. When doing conformal changes of metric, the tensor Bg(ϕ) appears as the
term by which the trace free part of the Ricci tensors of g and e2ϕg differ. We will make use
of this later.

When ψ is a conformal local diffeomorphism of (M, g) to another Riemannian manifold
(N, g′), then ψ∗(g′) = e2ϕg with ϕ = log |Dψ|. The Schwarzian derivative of ψ is defined by

Sg(ψ) = Bg(ϕ) .

For an analytic map ψ in the plane with g = g′ = g0, then ϕ = log |ψ′| and computing in
standard coordinates one gets

Sg(ψ) =

(
Re{ψ, z} −Im{ψ, z}
−Im{ψ, z} −Re{ψ, z}

)
, (1.1)
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where {ψ, z} = (ψ
′′

ψ′ )′ − 1
2
(ψ

′′

ψ′ )2 is the classical Schwarzian derivative.

On M , the conformal metric ĝ = e2ϕg is called Möbius with respect to g if Bg(ϕ) = 0,
and so a conformal local diffeomorphism ψ is said to be Möbius if Sg(ψ) = 0. If ϕ and σ are
smooth functions on M , then there is an important identity:

Bg(ϕ+ σ) = Bg(ϕ) +Bĝ(σ) , (1.2)

where ĝ = e2ϕg. In a chain of conformal local diffeomorphisms ψ1 : (M, g) → (N1, g
′) and

ψ2 : (N1, g
′)→ (N2, g

′′), equation (1.2) can be formulated as

Sg(ψ2 ◦ ψ1) = Sg(ψ1) + ψ∗1(Sg′(ψ2)) . (1.3)

This reduces to the classical formula for the Schwarzian derivative of a composition of analytic
maps in the plane.

By ||Bg(ϕ)|| we mean the norm of the Schwarzian tensor Bg(ϕ) with respect to g, as a
bilinear form on each tangent space, that is,

||Bg(ϕ)|| = max{|Bg(ϕ)(X, Y )| : |X| = |Y | = 1 } .

In cases, we will need to consider the norm of Bg(ϕ) in a metric ĝ = e2σg conformal to g.
Then

||Bg(ϕ)||ĝ = e−2σ||Bg(ϕ)|| .
With this, we now present the theorem in [O-S 2].

Theorem 1.1 Let (M, g) be a Riemannian manifold of dimension n ≥ 2 and ψ : (M, g)→
(Sn, g1) a conformal local diffeomorphism. Suppose that the scalar curvature of M is bounded
above by n(n−1)K for some K ∈ R, and that any two points in M can be joined by a geodesic
of length < δ for some 0 < δ ≤ ∞. If

||Sg(ϕ)|| ≤ 2π2

δ2
− 1

2
K

then ψ is injective.

With M the unit disc in the plane and g alternately the euclidean and hyperbolic metric,
Osgood and Stowe derive from this theorem the classical criteria of Nehari:

|{ψ, z}| ≤ π2

2
or |{ψ, z}| ≤ 2

(1− |z|2)2
, all |z| < 1

implies that ψ is univalent.
We point out that Theorem 1.1 can stated replacing (Sn, g1) by (Rn, g0) or Hn with its

metric of constant negative curvature. This follows from the transformation law (1.2) and
the fact that both g1 and the hyperbolic metric are Möbius with respect to the euclidean
metric. Finally, let scal(g) be the scalar curvature of g. It it easy to verify that the proof
given by Osgood and Stowe works equally well only assuming that at each point in M the
norm of the Schwarzian derivative of ψ is bounded above by

2π2

δ2
− scal(g)

2n(n− 1)
.
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2. Reflections in Hn+1

We think of Sn as the ideal boundary of hyperbolic (n + 1)-space Hn+1. Let Σ be
a complete hypersurface in Hn+1, with normal unit vector field N . At p ∈ Σ we define
G+(p), G−(p) ∈ Sn by following the geodesic through p normal to Σ for infinite time, in
the direction of N and −N respectively. Let k1, k2, ..., kn denote the principal curvatures of
Σ. Epstein has shown that if |ki| < 1 for all i, then Σ is embedded and G+ and G− are
diffeomorphisms onto open, disjoint simply-connected sets Ω+ and Ω− in Sn. Furthermore,
∂Ω+ = ∂Ω− = ∂∞Σ, the asymptotic boundary of Σ, and Sn = Ω+ ∪ Ω− ∪ ∂∞Σ [Ep 2]. This
allows one to define the reflection Λ = G− ◦G−1

+ , which maps Ω+ onto Ω− and which extends
to ∂∞Σ as the identity.

For our purposes, Σ will arise as the envelope of a family of horospheres {H(θ, ρ(θ))},
parametrized by the points θ on a given domain Ω ⊂ Sn and a support function ρ. The
horosphere H(θ, ρ) is tangent to Sn at θ and is uniquely determined by ρ, the (signed)
distance between the horosphrere and a fixed origin ϑ in Hn+1 (ϑ lies inside H(θ, ρ) precisely
when ρ < 0).

According to [Ep 2],

Λ(θ) =
|dρ|2 − 1

|dρ|2 + 1
θ +

2dρ

|dρ|2 + 1
(2.1)

where dρ stands for the spherical gradient of ρ, |dρ| for its length in the spherical metric. It
is then easy to see that

dρ =
Λ− (Λ · θ)θ
1− (Λ · θ)

(2.2)

where · is the euclidean inner product (points on Sn are considered as being in Rn+1).
We want to express dρ in terms of the stereographic coordinate x = S(θ) and the reflection

w = S ◦ Λ ◦ S−1 .

Let Xi be the vector field on Sn defined by S∗(Xi) = ∂i. Then

dρ(Xi) = dρ ·Xi =
Λ ·Xi

1− (Λ · θ)
.

We now use the equations

Λ ◦ S−1 = S−1 ◦ w = (1 + |w|2)−1(2w1, ..., 2wn, |w|2 − 1)

and
Xi = 2(1 + |x|2)−2(−2x1xi, ..., 1 + |x|2 − 2x2

i , ...,−2xnxi, 2xi)

to obtain

dρ(Xi) =
2xi

1 + |x|2
+ 2

wi − xi
|w − x|2

. (2.3)

We define
f = ρ ◦ S−1 − log(1 + |x|2) , (2.4)
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and so (2.3) yields

grad f = 2
w − x
|w − x|2

or

w = x+ 2
grad f

|grad f |2
. (2.5)

Here grad f stands for the euclidean gradient of f . We want to derive an expression for
the quasiconformal distortion of w in terms of f . We follow Ahlfors in his definition of
quasiconformality [Ah 2]: let Dw be the differential of w, and consider the eigenvalues
λ1 ≥ λ2 ≥ · · ·λn ≥ 0 of the (positive) symmetric matrix (Dw)t(Dw). The map w is said to
be K−quasiconformal if λ1λ

−1
n ≤ K2.

We therefore need to find upper and lower bounds for |Dw(y)|2, where y ∈ Rn is a unit
tangent vector at the point where the differential Dw is being considered. From (2.5),

Dw = I + 2DJ(grad f) ◦H(f) (2.6)

where J(x) = x
|x|2 is the inversion in Rn. Its differential at the point x is given by

DJ = |x|−4(|x|2I − 2Q(x)) ;

here Q(x) is the symmetric matrix with i,j-component xixj. Note that Q2(x) = |x|2Q(x) and
thus DJ is a conformal matrix such that |DJ | = |x|−2. Also, H(f) stands for the Hessian
of f , and in (2.6) DJ is evaluated at x = grad f .

So we have
Dw(y) = y + 2DJ(grad f)(H(f)(y)) .

We use 〈 〉 for the standard inner product in Rn and compute :

|Dw(y)|2 = 1 + 4|grad f |−4|H(f)(y)|2 + 4〈DJ(grad f)(H(f)(y)), y〉
= 1 + 4|grad f |−4|H(f)(y)|2 + 4〈H(f)(y), DJ(grad f)(y)〉 .

The Schwarzian tensor of f with respect to the euclidean metric is defined so that the
matrix B(f) representing it, is given by

B(f) = H(f)−Q(grad f)− αI ,

where α = 1
n
(∆f − |grad f |2). Thus

〈H(f)(y), y〉 = 〈B(f)(y), y〉+ 〈Q(grad f)(y), y〉+ α

and

|H(f)(y)|2 = |B(f)(y)|2 + |Q(grad f)(y)|2 + α2 + 2〈B(f)(y), Q(grad f)(y)〉
+2α〈B(f)(y), y〉+ 2α〈Q(grad f)(y), y〉

and

〈H(f)(y), Q(grad f)(y)〉 = 〈B(f)(y), Q(grad f)(y)〉+ |grad f |2〈Q(grad f)(y), y〉
+α〈Q(grad f)(y), y〉 .
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With this we obtain

|Dw(y)|2 = 1 + 4|grad f |−4|B(f)(y)|2 + 4|grad f |−4|Q(grad f)(y)|2

+4|grad f |−4(2α + |grad f |2)〈B(f)(y), y〉+ 4α|grad f |−2

+4α2|grad f |−4 − 4|grad f |−2〈Q(grad f)(y), y〉
= (1 + 2α|grad f |−2)2 + 4|grad f |−4(|B(f)(y)|2 + β〈B(f)(y), y〉)

+4|grad f |−4(|Q(grad f)(y)|2 − |grad f |2〈Q(grad f)(y), y〉) ,

where

β = 2α + |grad f |2 =
2

n
∆f + (

n− 2

n
)|grad f |2 .

Using the fact that

|Q(grad f)(y)|2 = 〈Q(grad f)(y), Q(grad f)(y)〉
= 〈Q2(grad f)(y), y〉
= |grad f |2〈Q(grad f)(y), y〉 ,

this finally yields :

Proposition 2.1 With the notation as before, the differential of the reflection w satisfies

|Dw(y)|2 = 4|grad f |−4|A(y)|2

where A is the matrix given by

A =
1

2
βI +B .

The scalar curvature of the metric ĝ = e2fg0 is given by

scal(ĝ) = −n(n− 1)e−2fβ ,

and the norm of the tensor Bg0(f) in the metric ĝ is given by e−2f ||B(f)||g0 . Therefore, if

||Bg0(f)||ĝ ≤
t

2

|scal(ĝ)|
n(n− 1)

for some 0 ≤ t < 1, then

(1− t)|β||grad f |−2 ≤ |Dw(y)| ≤ (1 + t)|β||grad f |−2 . (2.7)

Hence for |β||grad f | 6= 0, the reflection w will be K- quasiconformal with K = 1+t
1−t .

3. The main theorem

Let ψ : (M, g)→ (Sn, g1) be a conformal local diffeomorphism. If

||Sg(ψ)|| ≤ − t
2

scal(g)

n(n− 1)
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for some 0 ≤ t < 1, then ψ is a global diffeomorphism and with φ = ψ−1, we can define the
metric g2 = e2ρg1 = φ∗(g) on Ω = ψ(M). We regard ρ as a support function defined on Ω and
study the associated reflection Λ. The domain Ω will be simply-connected, a consequence of
the following version of Theorem 1.1 [Ch 2] :

Theorem 3.1 Let (M, g) be a complete Riemannian manifold of dimension n ≥ 2 and
ψ : (M, g)→ (Sn, g1) a conformal local diffeomorphism. If

||Sg(ψ)|| ≤ −1

2

scal(g)

n(n− 1)

then M is simply-connected.

With the aid of (1.3) we will translate the inequality

||Sg(ψ)|| ≤ −1

2

scal(g)

n(n− 1)
(3.1)

to Ω. Since φ∗(g) = e2ρg1, then

Bg1(ρ) = Sg1(φ) = −φ∗(Sg(ψ))

and therefore
||Sg(ψ)|| = ||Bg1(ρ)||g2 .

Hence (3.1) is equivalent to

||Bg1(ρ)||g2 ≤ −
1

2

scal(g2)

n(n− 1)
. (3.2)

We use stereographic projection to pull back to the corresponding domain in euclidean
space the conformal metric g2 = e2ρg1 that is defined on ψ(M). Let this new metric be
written as ĝ = e2fg0. Then f and ρ are related to each other as in (2.4). Recall that when
scal(ĝ)|grad f | 6= 0, the quasiconformal distortion of the reflection Λ is bounded by 1+t

1−t ,
where

t =
2n(n− 1)

|scal(ĝ)|
||Bg0(f)||ĝ .

By construction, the metrics ĝ and g2 are isometric under the stereographic projection S,
and furthermore we claim that

||Bg0(f)||ĝ = ||Bg1(ρ)||g2 .

This follows from the addition formula, as:

0 = Bg0(f − f) = Bg0(f) +Be2fg0(−f) .

But
Be2fg0(−f) = (S−1)∗(Be2ρg1(−ρ)) = −(S−1)∗(Bg1(ρ)) .

Thus
Bg0(f) = (S−1)∗(Bg1(ρ))
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and our claim is established.
On the other hand, in [Ep 1] it is shown that the distortion of Λ is given by

max
i 6=j

∣∣∣∣∣(1 + ki
1− ki

)(
1− kj
1 + kj

)

∣∣∣∣∣ ,
where k1, ..., kn are the principal curvatures at the corresponding point p = G−1

+ (θ) on Σ.
We want to conclude that |ki| < 1 for all i. For this we need to assume that scal(g2) < 0,

which will replace the apparently awkward condition |β||grad f | 6= 0. We shall show that
the assumption on scal(g2) together with the inequality

||Bg1(ρ)||g2 ≤ −
t

2

scal(g2)

n(n− 1)
(3.9)

for some 0 ≤ t < 1, imply the sought estimate of the principal curvatures of Σ. Our first
claim is that the metric g2 is actually negatively curved. Indeed, since it is conformally flat,
the Weyl tensor vanishes and hence the sectional curvatures are completely determined by
the scalar curvature and the trace free part of the Ricci tensor. To be precise, for X, Y
orthonormal tangent vectors, the sectional curvature K(X, Y ) of g2 is given by

K(X, Y ) = Bg1(ρ)(X,X) +Bg1(ρ)(Y, Y ) +
scal(g2)

n(n− 1)

(see [O-S 1], p.24 for a classical decomposition of the curvature tensor we have used here).
It follows that

K(X, Y ) ≤ (1− t) scal(g2)

n(n− 1)
< 0 .

Let now Σs be the forward parallel hypersurface to Σ at distance s. The hyperbolic
metric gs on Σs, suitably normalized, converges as s → ∞ to the metric g2 on Ω [Ep 2].
The normalized sectional curvatures tend to (kikj − 1)(1 − ki)

−1(1 − kj)
−1, and therefore

(kikj − 1)(1 − ki)(1 − kj) < 0. Hence ki 6= 1 for all i. Since the principal directions of Σ
and Σs are mapped to each other under the parallel flow, this enables one to compute the
differential of Λ. In particular, its determinant is given by

−
n∏
i=i

(
1 + ki
1− ki

) ,

where 1+ki
1−ki is the eigenvalue of dΛ corresponding to the principal direction i. Because Λ

reverses orientation, we conclude that

n∏
i=1

(1− k2
i ) ≥ 0 .

We claim that this inequality is strict. If this is not the case, then we must have ki = −1
for some i since we have already excluded the possibility ki = 1. Because ki 6= 1, DΛ does
not have an infinite eigenvalue and therefore |grad f | 6= 0 in (2.6). Hence the distortion
is finite and we see from Epstein’s formula that kj = −1 for some j 6= i. This contradicts
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the fact that (kikj − 1)(1 − ki)(1 − kj) < 0. This proves the claim, which now implies
that #{i : |ki| > 1} is even. If this number is not zero, then say |k1|, |k2| > 1. But then
(k1k2 − 1)(1− k1)(1− k2) > 0, again a contradiction. Therefore |ki| < 1 for all i, and so all
the sectional curvatures of Σ are negative.

Lemma 3.2 If ρ(θn)→∞ for any sequence {θn} in Ω converging (in the spherical metric)
to a point in ∂Ω, then Σ is complete.

Proof: Suppose γ(t) is a unit speed curve in Σ defined on [0,1) which cannot be extended
continuously to t = 1 in Σ. Then the curve G+(γ(t)) in Ω will have to tend to ∂Ω, hence
ρ→∞ along it. But then by construction of Σ as the envelope of the horospheres H(θ, ρ(θ)),
we will have γ(t) of infinite length, a contradiction.

We state now our main result.

Theorem 3.3 Let (M, g) be a complete Riemannian n-manifold of negative scalar curvature,
and let ψ : (M, g)→ (Sn, g1) be a conformal local diffeomorphism such that for some t ∈ [0, 1)

||Sg(ψ)|| ≤ − t
2

scal(g)

n(n− 1)
.

Then ψ is univalent and M diffeomorphic to Rn. Furthermore, there exists a 1+t
1−t-quasiconformal

diffeomorphism Λ of Sn onto itself, which takes the topological hemisphere Ω = ψ(M) to
Sn \ Ω̄ and which fixes ∂Ω pointwise.

Proof: The univalence of ψ follows from Theorem 1.1 and Theorem 3.1 implies that M ,
and thus Ω, are simply-connected. As seen before, the condition on Sg(ψ) corresponds to

||Bg1(ρ)||g2 ≤ −
t

2

scal(g2)

n(n− 1)
,

and so g2 and g are negatively curved. The remaining conclusions follow from the Cartan-
Hadamard theorem and the previous considerations on Λ.

We give the following application of this theorem. In [Ch 1] we derived a sufficient
condition for univalence on an arbitrary simply-connectd domain D1 in the plane. It states
that if

|l(z, z)− 1

6π
{ψ, z}| ≤ 1

3
K(z, z̄) (3.7)

for all z ∈ D1, then ψ is injective. The kernels K and l can be derived from the Green’s
function h(z, ζ) as follows:

K(z, ζ̄) = − 2

π

∂2

∂z∂ζ̄
h(z, ζ)

and

l(z, ζ) =
1

π

1

(z − ζ)2
+

2

π

∂2

∂z∂ζ
h(z, ζ) .

K is the Bergman kernel and the connection between these reproducing kernels and the
theory of conformal mappings were extensively studied by Bergman and Schiffer [B-S]. The
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condition (3.7) appears as a corollary of Theorem 1.1 with M = D1 and g the Bergman
metric πK(z, z̄)g0. We have therefore :

Corollary 3.4 Let D1 be a simply-connected domain in the plane and let ψ be analytic and
locally injective in D1. If

|l(z, z)− 1

6π
{ψ, z}| ≤ t

3
K(z, z̄)

for all z ∈ D1 and some t, 0 ≤ t < 1, then Ω = ψ(D1) is a quasidisc.

Note that we cannot claim that ψ admits a quasiconformal extension unless D1 is itself
a quasidisc.

Finally, the results presented here yield the following sufficient condition for a planar
domain to be a quasidisc :

Corollary 3.5 Let Ω ⊂ R2 be a domain and let g = e2fg0 be a complete metric of negative
Gaussian curvature k(g) on Ω. If for some t ∈ [0, 1)

||Bg0(f)||g ≤ −
t

2
k(g) , (3.8)

then Ω is a quasidisc.

The inequality (3.8) can be written more simply in the form

|fzz − f 2
z | ≤ tfzz̄ .

This theorem is implicit in the work of Epstein, but was never stated in this intrinsic form.
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